给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.(1)求椭圆C的方程和其“准圆”方程;(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
(本大题10分)曲线为参数,在曲线上求一点,使它到直线为参数的距离最小,求出该点坐标和最小距离.
(本大题10分)如图,为⊙的直径,切⊙于点,交⊙于点,,点在上.求证:是⊙的切线.
(本大题12分)已知函数函数的图象与的图象关于直线对称,.(Ⅰ)当时,若对均有成立,求实数的取值范围;(Ⅱ)设的图象与的图象和的图象均相切,切点分别为和,其中.(1)求证:;(2)若当时,关于的不等式恒成立,求实数的取值范围.
(本大题12分)在中,设角的对边分别是,,.(Ⅰ)求的值;(Ⅱ)若,求的面积.
(本大题12分)已知函数在上为单调递增函数.(Ⅰ)求实数的取值范围;(Ⅱ)若,,求的最小值.