已知,等边△ABC边长为6,P为BC边上一点,且BP=4,点E、F分别在边AB、AC上,且∠EPF=60°,设BE=x,CF=y.(1)求y与x的函数关系式,并写出x的取值范围;(2)①若四边形AEPF的面积为时,求x的值.②四边形AEPF的面积是否存在最大值?若存在,请求出面积的最大值及此时x的值;若不存在,请说明理由.
如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G. (1)求证:BC=DE; (2)如果∠ABC=∠CBD ,那么线段FD是线段FG和FB的比例中项吗?为什么?
如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,求折痕CE的长.
有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球. (1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (2)求摸出的两个球号码之和等于5的概率.
先化简,再求值:,其中.
计算:.