已知,等边△ABC边长为6,P为BC边上一点,且BP=4,点E、F分别在边AB、AC上,且∠EPF=60°,设BE=x,CF=y.(1)求y与x的函数关系式,并写出x的取值范围;(2)①若四边形AEPF的面积为时,求x的值.②四边形AEPF的面积是否存在最大值?若存在,请求出面积的最大值及此时x的值;若不存在,请说明理由.
如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E.DF⊥AC于点F.(1)求证:DF是⊙O的切线.(2)当∠B的度数是多少时,DE∥AB?并说明理由.
有四部不同的电影,分别记为A, B, C, D.(1)若甲从中随机选择一部观看,则恰好是电影A的概率是 ;(2)若甲从中随机选择一部观看,乙也从中随机选择一部观看,求甲、乙两人选择同一部电影的概率.
如图,正方形ABCD中,P是AC上一点,E是BC延长线上一点,且PB=PE.若BP= ,求DE的长.
某学校后勤人员到一家文具店给九年级的同学购买考试用文具包.文具店规定一次购买400个以上,可享受8折优惠,若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
某校有学生2100人,在“文明我先行”的活动中,开设了“法律、礼仪、感恩、环保、互助”五门校本课程,规定每位学生必须且只能选择一门。为了解学生的报名意向学校随机调查了100名学生,并制成如右统计表:(1)在这次调查活动中,学校采取的调查的方式是 (填写“普查”或“抽样调查”)(2)a= ,b= ,m= .(3)如果要画“校本课程报名意向扇形统计图”,那么“礼仪”类校本课程所对应的扇形圆心角的度数是 .(4)请你统计,全校选择“感恩”类校本课程的学生约有 人.