在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,),直线l的极坐标方程为ρcos()=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系.
已知集合今从A中取一个数作为十位数字, 从B中取一个数作为个位数字,问: (1)能组成多少个不同的两位数? (2)能组成多少个十位数字小于个位数字的两位数?
求在上的最大值和最小值。
设 (1)求的单调区间; (2)求在上的最值; (3)若关于的方程在上恰好有两个相异的实根,求实数的范围。
设已知 (1)若,求f(x)的单调增区间; (2)若时,f(x)的最大值为4,求a的值; (3)在(2)的条件下,求满足f(x)=1且的x的集合。
已知的两个根,求的值。