如图,⊙为四边形的外接圆,且,是延长线上一点,直线与圆相切.求证:.
选修4-2:矩阵与变换(本小题满分10分) 在平面直角坐标系xoy中,求圆C的参数方程为为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为若直线与圆C相切,求r的值。
选修4-2:矩阵与变换(本小题满分10分) 已知矩阵M (1)求矩阵M的逆矩阵; (2)求矩阵M的特征值及特征向量;
选修4-1:几何证明选讲(本小题满分10分) 如图, 半径分别为R,r(R>r>0)的两圆内切于点T,P是外圆上任意一点,连PT交于点M,PN与内圆相切,切点为N。求证:PN:PM为定值。
(本小题满分16分) 数列的前n项和为,存在常数A,B,C,使得对任意正整数n都成立。 (1)若数列为等差数列,求证:3A-B+C=0; (2)若设数列的前n项和为,求; (3)若C=0,是首项为1的等差数列,设,求不超过P的最大整数的值。
(本小题满分16分) 已知函数的导函数。 (1)若,不等式恒成立,求a的取值范围; (2)解关于x的方程; (3)设函数,求时的最小值;