对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下.(1)求,并根据图中的数据,用分层抽样的方法抽取个元件,元件寿命落在之间的应抽取几个?(2)从(1)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个元件寿命落在之间,一个元件寿命落在之间”的概率.
(本小题满分12分)在平面直角坐标系中,已知圆和圆.(Ⅰ)若直线过点,且被圆截得的弦长为,求直线的方程;(Ⅱ)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有条件的点P的坐标.
(本小题满分12分)已知函数.(Ⅰ)若曲线在点处的切线与直线:垂直,求a的值;(Ⅱ)讨论函数的单调性;若存在极值点,求实数a的取值范围.
如图,直三棱柱中,D、E分别是AB、的中点.(Ⅰ)证明:平面;(Ⅱ)设,,求四棱锥的体积.
(本小题满分12分)据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数如下表:(Ⅰ)为进行某项研究,从所用时间为12天的60辆汽车中随机抽取6辆.(ⅰ)若用分层抽样的方法抽取,求从通过公路1和公路2的汽车中各抽取几辆?(ⅱ)若从(ⅰ)的条件下抽取的6辆汽车中,再任意抽取两辆汽车,求这两辆汽车至少有一辆通过公路1的概率?(Ⅱ)假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发.为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径?
(本小题满分12分)已知函数.(Ⅰ)求的单调递增区间;(Ⅱ)在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,若,,的面积为,求b的值.