如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点。(1)求的值及椭圆的标准方程;(2)设动点满足,其中是椭圆上的点,为原点,直线与的斜率之积为,求证:为定值。
已知,关于的不等式,若是的必要不充分条件,且是的充分不必要条件,试求的取值范围.
已知x>0,y>0,且2x+5y=20.(1)求u=lgx+lgy的最大值;(2)求的最小值.
已知命题:方程有两个不等的负实根;命题:方程无实根, 若“或”为真,而“且”为假,求实数的取值范围.
如图,在直三棱柱中,,,分别是的中点。(1)求证平面;(2)求点F到平面ABE的距离。
如图,三棱锥P-ABC中,PA平面ABC,.(Ⅰ)求三棱锥P-ABC的体积;(Ⅱ)证明:在线段PC上存在点M,使得ACBM,并求的值.