安徽理)(如图,圆锥顶点为。底面圆心为,其母线与底面所成的角为。和是底面圆上的两条平行的弦,轴与平面所成的角为, (1)证明:平面与平面的交线平行于底面;(2)求。
(本小题满分12分)已知数列的前项和为,且满足。 (Ⅰ)求数列的通项公式; (Ⅱ)设,数列的前项和为,求证:。
(本小题满分12分)已知数列中,,数列满足。 (1)求证:数列是等差数列; (2)求数列中的最大项和最小项,并说明理由。
(本小题满分12分)设函数。(Ⅰ)求函数的最小正周期;(Ⅱ)若函数的图像与函数的图像关于原点对称,求的值。
在直角坐标系xoy中,以o为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,M,N分别为C与x轴,y轴的交点 (1)写出C的直角坐标方程,并求出M,N的极坐标; (2)设MN的中点为P,求直线OP的极坐标方程.
设函数. (1)解不等式; (2)若关于的不等式的解集不是空集,试求的取值范围.