如图,三棱锥中,,,,点在平面内的射影恰为的重心,M为侧棱上一动点.(1)求证:平面平面;(2)当M为的中点时,求直线与平面所成角的正弦值.
已知椭圆上的点到右焦点F的最小距离是,到上顶点的距离为,点是线段上的一个动点.(I)求椭圆的方程;(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.
如图在直三棱柱中,.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值大小;(Ⅲ)在上是否存在点,使得∥平面, 若存在,试给出证明;若不存在,请说明理由.
已知数列是首项为,公比的等比数列,设,数列.(1)求数列的通项公式;(2)求数列的前n项和Sn.
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
△ABC中,a,b,c分别是角A,B,C的对边,,且,(Ⅰ)求△ABC的面积;(Ⅱ)若a=7,求角∠C