古希腊著名的毕达哥拉斯学派把1、3、6、10 …,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.(1)第5个三角形数是 ,第n个“三角形数”是 ,第5个“正方形数”是 ,第n个正方形数是 ;(2)经探究我们发现:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.例如:①4=1+3,②9=3+6,③16=6+10,④ ,⑤ ,….请写出上面第4个和第5个等式;(3)在(2)中,请探究第n个等式,并证明你的结论.
(广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.
(广元)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证、再写出证明过程).
(绵阳)如图,在边长为2的正方形ABCD中,G是AD延长线时的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.
(眉山)(本小题满分8分)如图,在方格网中已知格点△ABC和点C.(1)画和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、、D为顶点的四边形是平行四边形的D点.
(眉山)(本小题满分9分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.