“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:⑴这次共抽查了 个家长;⑵请补全条形统计图和扇形统计图(友情提醒:条形图补画家长持“反对”态度的人数条,扇形图填上“反对”及“赞成”的百分数);⑶已知该校共有1200名学生,持“赞成”态度的学生估计约有 人.
在平面直角坐标系中,抛物线经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.求该抛物线的解析式;若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.
如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.求证:△DMN是等边三角形;连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ. 同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考: 小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由.
已知二次函数.当c=-3时,求出该二次函数的图象与x轴的交点坐标;若-2<x<1时,该二次函数的图象与x轴有且只有一个交点,求c的取值范围.
如图,港口B在港口A的东北方向,上午9时,一艘轮船从港口A出发,以16 海里/时的速度向正东方向航行,同时一艘快艇从港口B出发也向正东方向航行.上午11时轮船到达C处,同时快艇到达D处,测得D处在C处的北偏东60°的方向上,且C、D两地相距80海里,求快艇每小时航行多少海里?(结果精确到0.1海里/时,参考数据:,,)