如图所示,在平面直角坐标系中,抛物线 ()经过、两点,抛物线与轴交点为,其顶点为,连接,点是线段上一个动点(不与、重合),过点作轴的垂线,垂足为,连接。①求抛物线的解析式,并写出顶点的坐标;②如果点的坐标为(),的面积为,求与的函数关系式,写出自变量的取值范围,并求出的最大值;③在②的条件上,当取得最大值时,过点作的垂线,垂足为,连接,把沿直线折叠,点的对应点为,请直接写出点坐标,并判断点是否在该抛物线上;
某自行车厂为了赶速度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产辆与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):
(1)根据记录可知第一天生产辆 (2)产量最多的一天比产量最少的一天多生产多少辆? (3)赶进度期间该厂实行计件工资加浮动工资制度,即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上在奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?
已知且试化简:(1)(2)
当时,求下列各代数式的值: (1)(2)
互为相反数, c与d互为倒数,的绝对值是5,试求代数式的值.
把下列各数填在相应的大括号内,,,, , , , - (1)整数集合:{…} (2)分数集合:{…} (3)非负数集合:{…}