学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB长为12米.为方便学生行走,决定开挖小山坡,使斜坡BD的坡比是1∶3(即为CD与BC的长度之比).A,D两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.
如图,在直角坐标系中,B点的坐标为(a,b),且a、b满足.(1)求B点的坐标;(2)点A为y轴上一动点,过B点作BC⊥AB交x轴正半轴于点C,求证:BA=BC.
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.
在同一直角坐标系中分别描出点A(-3,0)、B(2,0)、C(1,3),再用线段将这三点首尾顺次连接起来,求△ABC的面积与周长.
如图,已知∠AOB=30°,P为其内部一点,OP=3,M、N分别为OA、OB边上的一点,要使△PMN的周长最小,请给出确定点M、N位置的方法,并求出最小周长.