已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,与在第一和第四象限的交点分别为.(1)若是边长为的正三角形,求抛物线的方程;(2)若,求椭圆的离心率.
已知数列的通项公式为,在等差数列数列中,,且,又、、成等比数列.(1)求数列的通项公式;(2)求数列的前项和.
如图,四棱锥的底面是正方形,平面,为上的点,且.(1)证明:;(2)若,求二面角的余弦值.
为贯彻“激情工作,快乐生物”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选—题答—题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为.(1)求选手甲答题次数不超过4次可进入决赛的概率;(2)设选手甲在初赛中答题的个数,试写出的分布列,并求的数学期望。
已知函数,.(1)求的值;(2)设、,,,求的值.
已知函数.(I)若,求函数的单调区间;(Ⅱ)求证:(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数是的导函数)在区间上总不是单调函数,求的取值范围。