吉安一中新校区正在如火如荼地建设中,如图,某工地的平面图呈圆心角为120°的扇形AOB,工地的两个出入口设置在点A及点C处,工地中有两条笔直的小路AD、DC,长度分别为300米、500米,且DC平行于OB。求该扇形的半径OA的长(精确到1米)。
对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.(1)判断1是否为函数≤≤的“均值”,请说明理由;(2)若函数为常数)存在“均值”,求实数a的取值范围;(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
已知数列是各项均为正数的等差数列,公差为d(d 0).在之间和b,c之间共插入个实数,使得这个数构成等比数列,其公比为q.(1)求证:;(2)若,求的值;(3)若插入的n个数中,有s个位于a,b之间,t个位于b,c之间,且都为奇数,试比较s与t的大小,并求插入的n个数的乘积(用表示).
已知椭圆:()过点,其左、右焦点分别为,且.(1)求椭圆的方程;(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.
某校10名学生组成该校“科技创新周”志愿服务队(简称“科服队”),他们参加活动的有关数据统计如下:
(1)从“科服队”中任选3人,求这3人参加活动次数各不相同的概率;(2)从“科服队”中任选2人,用表示这2人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
已知矩形内接于圆柱下底面的圆,是圆柱的母线,若,,此圆柱的体积为,求异面直线与所成角的余弦值.