已知实数为等比数列,存在等比中项,,则
将函数的图象上各点的纵坐标不变横坐标伸长到原来的2倍,再向左平移个单位,所得函数的单调递增区间为 .
不等式的解集为_______________.
公比为的等比数列前项和为15,前项和为 .
____________.
若对任意,,(、)有唯一确定的与之对应,称为关于、的二元函数.现定义满足下列性质的二元函数为关于实数、的广义“距离”:(1)非负性:,当且仅当时取等号;(2)对称性:;(3)三角形不等式:对任意的实数z均成立.今给出四个二元函数:①;②③;④.能够成为关于的、的广义“距离”的函数的所有序号是 .