已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.(1)求椭圆的方程;(2)已知直线与椭圆交于、两点,试问,是否存在轴上的点,使得对任意的,为定值,若存在,求出点的坐标,若不存在,说明理由.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (1)求证:CE⊥平面PAD; (2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.
给定抛物线,是抛物线的焦点,过点的直线与相交于、两点,为坐标原点. (1)设的斜率为1,求以为直径的圆的方程; (2)设,求直线的方程.
已知. (1)若,求曲线在点处的切线方程; (2)若求函数的单调区间; (3)若不等式恒成立,求实数的取值范围.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB. (1)证明:AC2=AD·AE (2)证明:FG∥AC
在中,内角所对边长分别为,,. (1)求; (2)若的面积是1,求.