如图,三棱柱中,平面,,, 点在线段上,且,.(Ⅰ)求证:直线与平面不平行;(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.
(本小题满分12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
(Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: ,.
【原创】(本小题满分12分)已知.(Ⅰ)求函数的最小正周期和对称中心;(Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.
(本小题满分7分)选修4—5:不等式选讲已知函数,, 若恒成立,实数的最大值为.(Ⅰ)求实数.(Ⅱ)已知实数满足且的最大值是,求的值.
(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆的极坐标方程;(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
(本小题满分7分)选修4—2:矩阵与变换已知矩阵(Ⅰ)求A的逆矩阵A-1;(Ⅱ)求A的特征值及对应的特征向量。