设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于,求实数的取值范围.
已知曲线 y = x3 + x-2 在点 P0 处的切线 平行直线 4x-y-1=0,且点 P0 在第三象限, 求P0的坐标; ⑵若直线 , 且 l 也过切点P0 ,求直线l的方程.
已知(1+2)n的展开式中,某一项的系数恰好是它前一项系数的2倍,而且是它后一项系数的,求展开式中二项式系数最大的项.
一物体沿直线以速度(的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?
设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x). (1)求g(x)的解析式; (2)若直线y=m与C2只有一个交点,求m的值和交点坐标.
已知函数f(x)=x|m-x|(x∈R),且f(4)=0. (1)求实数m的值; (2)作出函数f(x)的图象并判断其零点个数; (3)根据图象指出f(x)的单调递减区间; (4)根据图象写出不等式f(x)>0的解集; (5)求集合M={m|使方程f(x)=m有三个不相等的实根}.