如图,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为E,∠ABC=45°,过E作AD的垂线交AD于F,交BC于G,过E作AD的平行线交AB于H.求证:FG2=AF·DF+BG·CG+AH·BH.
已知.(1)求函数的最大值;(2)设,,且,证明:.
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P在第一象限,且时,求点M的坐标.
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.(1)求从甲、乙、丙三个车床中抽取的零件的件数;(2)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件.
在中,角的对边分别为,且.(1)求的值;(2)若成等差数列,且公差大于0,求的值.
已知函数,,.(1)若当时,恒有,求的最大值;(2)若当时,恒有,求的取值范围.