A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为,每道程序中得优、良、中的概率分别为p1、、p2.(1)求学生甲不能通过A高校自主招生考试的概率;(2)设ξ为学生甲在三道程序中获优的次数,求ξ的分布列.
已知函数的定义域为N+,且.①求f(3)、f(4)的值;②记.求证:数列是等比数列;③求②中数列的通项公式
在中,a、b、c分别为角A、B、C的对边,向量,且.①求角B的大小;②若,求a+c的最大值
某高三学生的10科会考成绩中,有三科“优”,四科“良”,三科“及格”.从这10科成绩中任取3科,求①取出的三科成绩中“优”的料数X的分布列和数学期望;②取出的三科成绩中“优”多于“良”的概率
已知数列的前n项和,数列的前Ii项和①求数列和的通项公式;②设,求数列的前n项和的表达式
已知函数f(x)=。(I)若f(x)=。①求曲线y=f(x)上的点P(1,f(1))为切点的切线的斜率;②若函数f(x)在x=x1处取得极大值,在x=x2处取得极小值,且点(x1,f(x1))在第二象限,点(x2,f(x2))位于y轴负半轴上,求m的取值范围;(II)当an=时,设函数f(x)的导函数为,令Tn=,证明:Tn1