已知的定义域为[].(1)求的最小值.(2)中,,,边的长为函数的最大值,求角大小及的面积.
编号为1,2,3的三位学生随意入坐编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是.(1)求随机变量的概率分布; (2)求随机变量的数学期望和方差。
有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:⑴第一次抽到次品的概率;⑵第一次和第二次都抽到次品的概率;⑶在第一次抽到次品的条件下,第二次抽到次品的概率.
(本小题满分14分)设函数,函数g(x)=分别在x=m和x=n处取得极值,且m<n(1)求的值(2)求证:f(x)在区间[m,n]上是增函数(3)设f(x)在区间[m,n]上的最大值和最小值分别为M和N,试问当实数a为何值时,M-N取得最小值?并求出这个最小值
(本小题满分12分)设数列的前n项和为且方程有一根为,n=1,2,3…,试求的值,猜想的表达式,并用数学归纳法加以证明
(本小题满分12分)某商场从生产厂家以每件20元的价格购进一批商品,该商品的销售量Q(单位:件)与零售价p(单位:元)有如下关系为Q=8300-170p-,求该商品零售价定为多少元时,毛利润L最大,并求出最大毛利润(毛利润=销售收入-进货支出)