已知,不等式的解集为.(1)求的值;(2)若对一切实数恒成立,求实数的取值范围.
已知正三棱柱的每条棱长均为,为棱上的动点,(1)当在何处时,∥平面,并证明之;(2)在(1)下,求平面与平面所成锐二面角的正切值。
美国篮球职业联赛(),某赛季的总决赛在洛杉矶湖人队与费城76人队之间角逐,采用七局四胜制,即若有一队胜四场,由此队获胜且比赛结束,因两队实力水平非常接近,在每场比赛中两队获胜是等可能的,据以往资料统计,每场比赛组织者可获门票收入300万美元,两队决出胜负后问:(1)组织者在此次决赛中获门票收入为1200万美元的概率是多少?(2)组织者在此次决赛中获门票收入不低于1800万美元的概率是多少?
在三棱柱,已知是正方形且边长为,为矩形,且平面⊥平面(1)求证:平面⊥平面;(2)求点到平面的距离。
(本小题满分12分)已知函数,,函数在、处取得极值,其中。(Ⅰ)求实数的取值范围;(Ⅱ)判断在上的单调性;(Ⅲ)已知在上的最大值比最小值大 ,若方程有3个不同的解,求实数的取值范围。
(本小题满分12分)如图,已知四棱锥,底面为菱形,⊥平面,,、分别是、的中点。(Ⅰ)证明:⊥;(Ⅱ)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。