已知函数,. (1)若存在,使得,求a的取值范围; (2)若有两个不同的实数解,证明:.
(理科)如图,已知⊙:及点 ,在 ⊙上任取一点′,连′,并作′的中垂线l,设l与′交于点P, 若点′取遍⊙上的点. (1)求点P的轨迹C的方程; (2)设直线与轨迹C相交于A、B两个不同的点,与x轴相交于点D.若的面积取得最大值时的椭圆方程.
(文科)已知椭圆的左、右两个顶点分别为A,B,直线与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2.(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.
(理科)已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4。(Ⅰ)求椭圆的方程;(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程。
(文科)
20090423
已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.
(理科)如图,直线与椭圆交于A、B两点,记的面积为。(Ⅰ)求在,的条件下,的最大值;(Ⅱ)当时,求直线AB的方程。