如图,点是椭圆的一个顶点,的长轴是圆的直径,、是过点且互相垂直的两条直线,其中交圆于、两点,交椭圆于另一点.(1)求椭圆的方程;(2)求面积的最大值及取得最大值时直线的方程.
如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=CD,E是PC的中点. (1)证明PA∥平面BDE; (2)求二面角B﹣DE﹣C的平面角的余弦值; (3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
已知,,. (1)当时,试比较与的大小关系; (2)猜想与的大小关系,并给出证明.
设函数f(x)=x3-x2+6x-a. (1)对于任意实数x,f′(x)≥m恒成立,求m的最大值; (2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是多少?
已知,(). (1)若,求证:; (2)设,若,求的值.