在平面直角坐标系xOy中,已知圆的圆心为Q,过点且斜率为的直线与圆Q相交于不同的两点A、B.(1)求的取值范围;(2)是否存在常数,使得向量与共线?如果存在,求出的值;如果不存在,请说明理由。
已知椭圆的离心率为,焦点到相应准线的距离为(1)求椭圆C的方程(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。
设数列是有穷等差数列,给出下面数表: …… 第1行 …… 第2行 … … … … … … 第n行上表共有行,其中第1行的个数为,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为.(1)求证:数列成等比数列;(2)若,求和.
已知椭圆的方程为,点P的坐标为(-a,b).(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;(2)设直线交椭圆于、两点,交直线于点.若,证明:为的中点;(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点、满足,写出求作点、的步骤,并求出使、存在的θ的取值范围.
(本题满分14分)已知函数(Ⅰ)求的单调区间;(Ⅱ)如果当且时,恒成立,求实数的范围.
(本小题满分12分)已知是等比数列,公比,前项和为(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,求证