在平面直角坐标系中,直线(为参数)与圆(为参数)相切,切点在第一象限,则实数的值为.
已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*) 满足anbn+1-an+1bn+2bn+1bn=0. (1)令cn=,求数列{cn}的通项公式; (2)若bn=3n-1,求数列{an}的前n项和Sn.
已知 (1)最小正周期及对称轴方程; (2)已知锐角的内角的对边分别为,且 ,,求边上的高的最大值.
已知命题:任意,有,命题:存在,使得.若“或为真”,“且为假”,求实数的取值范围.
(本小题满分12分)已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)若函数在区间上是减函数,求实数a的取值范围; (Ⅲ)当时,函数图象上的点都在所表示的平面区域内,求数a的取值范围
(本小题满分12分)椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点. (Ⅰ)求椭圆的方程; (Ⅱ)当的面积为时,求直线的方程.