学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在一次游戏中,①摸出3个白球的概率,②获奖的概率;(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).
已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线的极坐标方程为.(1)把直线的极坐标方程化为直角坐标系方程;(2)已知为椭圆上一点,求到直线的距离的最大值。
如图,△是等边三角形, ,,,,分别是,,的中点,将△沿折叠到的位置,使得.(1)求证:平面平面;(2)求证:平面.
在直角坐标系中,直线的参数方程为 (为参数),若以直角坐标系 的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为. (1)求直线的倾斜角; (2)若直线与曲线交于两点,求AB的距离.
通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表: 性别与看营养说明列联表 单位 名
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为10的样本,问样本中看与不看营养说明的女生各有多少名? (2)根据以上列联表,能否在犯错误的概率不超过0.01的前提下认为性别与是否看营养说明之间有关系? 下面的临界值表供参考:
(参考公式:,其中)
为了更好的了解某校高三学生期中考试的数学成绩情况,从所有高三学生中抽取40名学生,将他们的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)若该校高三年级有1800人,试估计这次考试的数学成绩不低于60分的人数及60分以上的学生的平均分;(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取两名学生,求这两名学生成绩之差的绝对值不大于10的概率