如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。(1).求证:EA⊥EC;(2).设平面ECD与半圆弧的另一个交点为F。①求证:EF//AB;②若EF=1,求三棱锥E—ADF的体积
已知向量=(3,-4),=(6,-3),=(5-m,-3-m).(1)若点A,B,C不能构成三角形,求实数m满足的条件;若△ABC为直角三角形,求实数m的值.
在△ABC中,A、B、C是三角形的三内角,是三内角对应的三边,已知.(1)求角A的大小;(2)若=,且△ABC的面积为,求的值.
已知向量a=3e1-2e2,b=4e1+e2,其中e1=(1,0),e2=(0,1),求:(1)a·b,|a+b|;(2)a与b的夹角的余弦值.
已知函数定义在上,对任意的,,且.(1)求,并证明:;(2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.
设各项均为正数的数列的前项和为,满足,且恰为等比数列的前三项.(1)证明:数列为等差数列; (2)求数列的前项和.