已知椭圆(a>b>0)的左焦为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心为(p,q).(1).当p+q≤0时,求椭圆的离心率的取值范围;(2).若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,的最小值为,求椭圆的方程.
本小题满分10分)六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端; (2)甲、乙必须相邻; (3)甲、乙不相邻;(4)甲、乙按自左至右顺序排队(可以不相邻); (5)甲、乙站在两端.
已知.求:⑴. ; ⑵. ;⑶. ; ⑷..
12分)a,b,c为不全相等的正数,求证aabc(a+b+c)
某游戏设有两关,只有过了第一关才能玩第二关,每关最多玩两次,连续两次失败者被淘汰.过关者可获奖金, v只过第一关获900元,两关全过获3600元。某人过每一关的概率均为,各次过关与否互不影响,且此人不放弃所有机会。(1)求该人获得900元奖金的概率(2)若该人已顺利通过第一关,求他获得3600元奖金的概率(3)求该人获得奖金额X的数学期望E(X) (精确到元)
设函数f(x)= (1)解不等式f(x) (2)若不等式f(x)对xR恒成立,求实数a的取值范围