已知椭圆(a>b>0)的左焦为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心为(p,q).(1).当p+q≤0时,求椭圆的离心率的取值范围;(2).若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,的最小值为,求椭圆的方程.
已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点. (Ⅰ)求证:平面; (Ⅱ)求证:平面.
已知直线,. (Ⅰ)若,求实数的值; (Ⅱ)当时,求直线与之间的距离.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线与曲线交于点(点在第一象限). (Ⅰ)求曲线的方程; (Ⅱ)已知为曲线的左顶点,平行于的直线与曲线相交于两点.判断直线是否关于直线对称,并说明理由.
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面. (Ⅰ)求证:; (Ⅱ)若二面角为,求的长.