已知椭圆的离心率,长轴的左右端点分别为,.(1)求椭圆的方程;(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.
如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.(1)求直线AC与PB所成角的余弦值;(2)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
已知向量,若正数k和t使得向量垂直,求k的最小值.
已知点G是△ABC的重心,A(0, -1),B(0, 1),在x轴上有一点M,满足||=||, (∈R).⑴求点C的轨迹方程;⑵若斜率为k的直线l与点C的轨迹交于不同两点P,Q,且满足||=||,试求k的取值范围.
在中,O为中线AM上一个动点,若AM=2,则的最小值是_____.
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点, (I)求证:(I)AC⊥BC1; (II)求证:AC 1//平面CDB1;