求过直线与已知圆的交点,且在两坐标轴上的四个截距之和为8的圆的方程。
一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。 (Ⅰ)若袋中共有10个球, (i)求白球的个数; (ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。 (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
已知函数在取得极值。 (Ⅰ)确定的值并求函数的单调区间; (Ⅱ)若关于的方程至多有两个零点,求实数的取值范围。
已知的展开式前三项中的的系数成等差数列. (1)求展开式中所有的的有理项; (2)求展开式中系数最大的项.
从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾) (1)甲、乙两人必须跑中间两棒; (2)若甲、乙两人只有一人被选且不能跑中间两棒; (3)若甲、乙两人都被选且必须跑相邻两棒.
已知函数. (1)求函数的图像在点处的切线方程; (2)若,且对任意恒成立,求的最大值; (3)当时,证明.