如图,平面直角坐标系中,已知向量,,且。(1)求与间的关系;(2)若,求与的值及四边形的面积.
已知直线与抛物线没有交点;方程表示椭圆;若为真命题,试求实数的取值范围.
已知的图象经过点,且在处的切线方程是 (1)求的解析式;(2)求的单调递增区间.
如图,动点到两定点、构成,且,设动点的轨迹为. (1)求轨迹的方程; (2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围.
如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,. (1)设是的中点,证明:平面; (2)证明:在内存在一点,使平面,并求点到,的距离.
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1 (1)证明:AB=AC (2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小