甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1)求甲同学至少有4次投中的概率;(2)求乙同学投篮次数的分布列和数学期望.
(本小题满分8分)计算:(Ⅰ); (Ⅱ)+.
如图,椭圆的一个 焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线交椭圆于A、B两点,若直线绕点F任意转动,恒有, 求的取值范围.
设过点的直线分别与轴和轴交于两点,点与点关于轴对称,为坐标原点,若且.(Ⅰ)求点的轨迹的方程;(Ⅱ)过的直线与轨迹交于两点,求的取值范围.
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点.(Ⅰ)求证:平面.(Ⅱ)求二面角的余弦值.
已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线的距离为3.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与直线相交于不同的两点M、N,问是否存在实数使;若存在求出的值;若不存在说明理由。