如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
(本小题满分12分)在四棱锥中,,平面,为的中点,,.(1)求四棱锥的体积;(2)若为的中点,求证:平面平面.
(本小题满分12分)已知向量,向量,函数.(1)求的最小正周期;(2)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和.
(本小题满分14分)已知函数.(Ⅰ)当时,求在区间上的最小值;(Ⅱ)讨论函数的单调性;(Ⅲ)当时,有恒成立,求的取值范围.
(本小题满分13分)等差数列的前项和为,已知为整数,且在前项和中最大.(Ⅰ)求的通项公式;(Ⅱ)设.(1)求证:; (2)求数列的前项和.
(本小题满分12分)已知函数满足,对任意,都有,且.(Ⅰ)求函数的解析式;(Ⅱ)若,使方程成立,求实数的取值范围.