某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.(1)求从A,B,C三个行政区中分别抽取的社区个数;(2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.
(本小题满分12分)已知直线与椭圆交于两点,椭圆上的点到下焦点距离的最大值、最小值分别为,向量,O为坐标原点。 (Ⅰ)求椭圆的方程;(Ⅱ)判断的面积是否为定值,如果是,请给予证明;如果不是,请说明理由。
(本小题满分12分)某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):甲班
乙班
(Ⅰ)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;(Ⅱ)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;(Ⅲ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由。
附:
(本小题满分12)如图,在四棱锥S—ABCD中,已知底面ABCD为直角梯形,其中AD//BC,底面ABCD,SA=AB=BC=2,SD与平面ABCD所成角的正切值为。(Ⅰ)在棱SD上找一点E,使CE//平面SAB,并证明。(Ⅱ)求二面角B—SC—D的余弦值。
(本小题满分12分)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12n mile的水面上,有蓝方一艘小艇正以每小时10n mile的速度沿南偏东75°方向前进,若侦察艇以每小时14n mile的速度,沿北偏东45°+方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角的正弦值。
(本小题满分12分)已知点,点A、B分别在x轴负半轴和y轴上,且,点满足,当点B在y轴上移动时,记点C的轨迹为E。(1)求曲线E的方程;(2)过点Q(1,0)且斜率为k的直线交曲线E于不同的两点M、N,若D(,0),且·>0,求k的取值范围。