年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”。(1)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?(2)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.
在△ABC中,a、b、c分别为角A、B、C所对的边,且(2b+c)cosA十acosC =0。 (1)求角A的大小; (2)求的最大值,并求取得最大值时角B、C的大小.
已知数列的首项. (1)求证:是等比数列,并求出的通项公式; (2)证明:对任意的; (3)证明:.
在△中,角所对的边分别为,已知. (1)求的值; (2)若,,求△的面积.
某地需要修建一条大型输油管道通过240公里宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为400万元,铺设距离为公里的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元. (1)试将表示成的函数; (2)需要修建多少个增压站才能使最小,其最小值为多少?
已知数列的前项和为,且=,数列中,,点在直线上. (1)求数列的通项和; (2) 设,求数列的前n项和.