已知椭圆,直线与相交于、两点,与轴、轴分别相交于、两点,为坐标原点.(1)若直线的方程为,求外接圆的方程;(2)判断是否存在直线,使得、是线段的两个三等分点,若存在,求出直线的方程;若不存在,说明理由.
如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4. (Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围; (Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
已知函数在处取得的极小值是. (1)求的单调递增区间; (2)若时,有恒成立,求实数的取值范围.
如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD (1)求证:BF∥平面ACE; (2)求二面角B-AF-C的大小; (3)求点F到平面ACE的距离.
设角是的三个内角,已知向量,,且. (Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围.
(本小题满分12分)已知数列满足递推式: (1)若的通项公式; (2)求证: