已知矩阵 .(1) 求的逆矩阵;(2)求矩阵的特征值、和对应的特征向量、.
已知各项均为正数的数列满足:。(1)求的通项公式(2)当时,求证:
中心在坐标原点,焦点在轴上的椭圆的离心率为,且经过点。若分别过椭圆的左右焦点、的动直线、相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.(1)求椭圆的方程;(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.
如图,四边形ABCD中,为正三角形,,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.(Ⅰ)求证:平面PBD;(Ⅱ)若时,求二面角的余弦值。
已知函数,其中为自然对数的底数.(Ⅰ)当时,求曲线在处的切线与坐标轴围成的三角形的面积;(Ⅱ)若函数存在一个极大值和一个极小值,且极大值与极小值的积为,求的值.
设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局。在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为。比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束。(1)求只进行了三局比赛,比赛就结束的概率;(2)记从比赛开始到比赛结束所需比赛的局数为,求的概率分布列和数学期望。