(本小题满分12分)已知在椭圆中,分别为椭圆的左右焦点,直线过椭圆右焦点,且与椭圆的交点为(点在第一象限),若.(Ⅰ)求椭圆的方程;(Ⅱ)以为圆心的动圆与轴分别交于两点A、B,延长,分别交椭圆于两点,判断直线的斜率是否为定值,并说明理由.
(本小题满分10分) 已知函数(为常数,且)的图象过点. (1)求实数的值; (2)若函数,试判断函数的奇偶性,并说明理由.
抛物线经过点、与, 其中,,设函数在和处取到极值. (1)用表示; (2) 比较的大小(要求按从小到大排列); (3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.
在中,且. (1)判断的形状; (2)若求的取值范围.
设函数. (1)求函数的单调区间; (2)若对恒成立,求实数的取值范围.
设函数,其中向量, 向量. (1)求的最小正周期; (2)在中,分别是角的对边,, 求的长.