已知动圆过点,且与圆相内切.(1)求动圆的圆心的轨迹方程;(2)设直线(其中与(1)中所求轨迹交于不同两点,D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
( 14分) 已知二次函数的图象过点(0,-3),且的解集. (1)求的解析式; (2)求函数的最值.
( 12分) 已知函数 (1)求函数的最小正周期和单调增区间; (2)函数的图像可以由函数的图像经过怎样的变换得到?
12分) 已知角是第三象限角,且 (1)化简; (2)若,求的值.
(本题10分) 已知函数f(x)=x3+ax2+bx+c(x)在x=1和x=-处都取得极值。 (1) 求a、b的值; (2) 求函数f(x)的单调递增区间; (3) 若对任意x,f(x)<c2恒成立,求实数c的取值范围。
(本题10分) 某医院用50万元购买了一台医疗仪器,这台仪器启用后每天都要进行保养、维修,设备在启用以后的第n(n∈N*)天应付保养维修费为(n+99)元。 (1) 若使用100天后报废 ,每天的平均消耗是多少? (2)使用多少天报废能使平均每天的耗费最少?