2014年索契冬季奥运会,已经在2014年02月07日至02月23日在俄罗斯联邦索契市举行.该市为了缓解交通压力,大力发展公共交通.为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的45名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示:(1)估计这45名乘客中候车时间少于12分钟的人数;(2)若从上表第四、五组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.
如图,是双曲线C的两个焦点,直线是双曲线C的右准线.为双曲线C的两个顶点,点P是双曲线C右支上异于的一动点,直线交双曲线C的右准线分别为、两点.⑴求双曲线C的方程;⑵求证:为定值.
已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2),求的最大值;
在 △ A B C 中,角 A , B , C 的对边分别为 a , b , c , B = π 3 , cos A = 4 5 , b = 3 .
(Ⅰ)求 sin C 的值;
(Ⅱ)求 △ A B C 的面积.
已知实数列等比数列,其中成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)数列的前项和记为证明: <128…).
已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.