设随机变量X的分布列为P(X=i)=,(i=1,2,3,4).(1)求P(X<3);(2)求P;(3)求函数F(x)=P(X<x).
(本小题满分13分)在平面直角坐标系中,角,的始边为轴的非负半轴,点在角的终边上,点在角的终边上,且. (1)求; (2)求的坐标并求的值.
(本小题满分13分)等差数列满足,,数列的前项和为,且,求数列和的通项公式.
本题共14分)已知函数。 (1)求的定义域; (2)判定的奇偶性; (3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,请说明理由。
(本题共13分)已知函数在上满足,且当时,。 (1)求、的值; (2)判定的单调性; (3)若对任意x恒成立,求实数的取值范围。
(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,小时内供水总量为吨。现在开始向池中注水并同时向居民小区供水,问: (1)多少小时后蓄水池中的水量最少? (2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?