如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
一张边长为正方形的纸片,剪去两个面积一定且一样的小长方形得到一个“”图案如图1所示.小长方形的的相邻两边长与之间的函数关系如图2所示:(1)求与之间的函数关系式;(2)“”图案的面积是多少?(3)如果小长方形中满足,求其相邻边长的范围.
某市为治理污水,需要铺设一段全长为的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,结果提前天完成这一任务,实际每天铺设多长管道?
如图,在直角坐标系中,点是反比例函数的图象上一点,轴的正半轴于点,是的中点;一次函数的图象经过、两点,并交轴于点若(1)求反比例函数和一次函数的解析式;(2)观察图象,请写出在轴的右侧,当时,的取值范围.
中,,,将折叠到边上得到,折痕,求的面积.
如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角△MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.绕点O顺时针旋转△MON,其中旋转的角度为α(0<α<360°).(1)将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为 度;(2)将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角△MON从图1旋转到图3的位置的过程中,若直角△MON绕点O按每秒25°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC时,求此时直角△MON绕点O的运动时间t的值.