在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.(1)求点P的轨迹方程;(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.(ⅰ)求圆M的方程;(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
(本小题满分12分) 设数列的前项和为已知 (1)设,证明数列是等比数列; (2)求数列的通项公式;(3)若,为的前n项和,求证:.
(本小题满分12分)已知函数. (1)当时,证明函数只有一个零点; (2)若函数在区间上是减函数,求实数的取值范围
((本小题满分12分) 已知圆:. (1)直线过点,且与圆交于、两点,若,求直线的方程; (2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程.
(本小题满分12分) 已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点. (1)证明:; (2)证明:平面; (3)求二面角的余弦值.
(本小题满分10分) 已知向量. (1)若,求的值; (2)记,在△ABC中,角的对边分别是且满足,求函数f(A)的取值范围.