如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点。(1)求的值及椭圆的标准方程;(2)设动点满足,其中是椭圆上的点,为原点,直线与的斜率之积为,求证:为定值。
本题满分13分)某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(Ⅰ)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式;(Ⅱ)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.
.如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD.(Ⅰ)求异面直线BF与DE所成角的余弦值;(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
已知数列的前项和为,满足.(Ⅰ)证明:数列为等比数列,并求出;(Ⅱ)设,求的最大项.
在锐角中,三内角所对的边分别为.设,(Ⅰ)若,求的面积;(Ⅱ)求的最大值.
已知数列满足条件,,,设(1)求数列的通项公式;(2)求和:。