某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有两个定点投篮位置,在点投中一球得2分,在点投中一球得3分。某规则是:按先后再的顺序投篮,教师甲在和点投中的概率分别是和,且在两点投中与否相互独立。(1)若教师甲投篮三次,试求他投篮得分的分布列和数学期望;(2)若教师乙与教师甲在投中的概率相同,两人按规则各投三次,求甲胜乙的概率。
设是定义在上的偶函数,当时,单调递减,若成立,求的取值范围.
解方程:
已知椭圆的右焦点为,点在椭圆上. (1)求椭圆的方程; (2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,求证:△的周长是定值.
已知圆,直线. (1)求证:对任意,直线与圆恒有两个交点; (2)求直线被圆截得的线段的最短长度,及此时直线的方程.
如图,三棱柱中,侧棱垂直底面,是棱的中点. (1)证明:平面⊥平面; (2)平面分此棱柱为两部分,求这两部分体积的比.