如图1,在Rt中,, D、E分别是上的点,且,将沿折起到的位置,使,如图2.(1)求证:平面平面;(2)若,求与平面所成角的余弦值;(3)当点在何处时,的长度最小,并求出最小值.
设函数 (1)当时,求函数的定义域; (2)若函数的定义域为R,试求的取值范围。
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为:,(t为参数),直线与曲线分别交于两点. (1)写出曲线和直线的普通方程; (2)若成等比数列,求的值.
如图,是⊙的一条切线,切点为,都是⊙的割线,已知. (1)证明:; (2)证明:.
已知f(x)=xlnx. (I)求f(x)在[t,t+2](t>0)上的最小值; (Ⅱ)证明:都有。
某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?