如图,在侧棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.(2)求BC1与平面B1C1EF所成的角的正弦值.
(本小题满分12分) 点P为圆:(>0)上一动点,PD轴于D点,记线段PD的中点M的运 动轨迹为曲线C.(I)求曲线C的方程; (II)若动直线与曲线C交于A、B两点,当△OAB(O是坐标原点)面积取得最大值,且最大值为1时,求的值.
(本小题满分12分) 某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒) 如下: (I)请画出适当的统计图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩 的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答 结论). (Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个低 于12.8秒的概率. (III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5] 之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率
(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G 为BF的中点,若EG//面ABCD (I)求证:EG面ABF (Ⅱ)若AF=AB,求二面角B—EF—D的余弦值
(本小题满分12分) 已知数列{}为公差不为零的等差数列,=1,各项均为正数的等比数列{}的第1 项、第3项、第5项分别是、、. (I)求数列{}与{}的通项公式; (Ⅱ)求数列{}的前项和.
已知数列中,且()。 (1)求,的值; (2)设,是否存在实数,使数列为等差数列,若存在请求其通项,若不存在请说明理由。