△ABC是锐角三角形,BC=6,面积为12.点P在AB上,点Q在AC上.如图9-33,正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC的公共部分的面积为y.(1)当RS落在BC上时,求x;(2)当RS不落在BC上时,求y与x的函数关系式;(3)求公共部分面积的最大值.
]已知函数y=-3(x-2)2+9. (1)当x= 时,抛物线有最大值,是 ; (2)当x 时,y随x的增大而增大; (3)该函数图象可由y=-3x2的图象经过怎样的平移得到? (4)求出该抛物线与x轴的交点坐标; (5)求出该抛物线与y轴的交点坐标。
如图所示,PA、PB是⊙O的两条切线,A、B为切点,连接PO,交⊙O于D,交AB于点C,根据以上条件请写出三个你认为正确的结论,并对其中一个结论给予证明;
已知关于x的一元二次方程x2 + 2(k-3)x + k2-9 = 0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
解下列方程:(1)(x﹣3)2=2(x﹣3)(2)x2-4x+1=0(用配方法);
已知,如图:四边形ABCD中,∠C>90°,CD⊥AD于D,CB⊥AB于B,AB=,tanA是关于x的方程的一个实数根。(1)求tanA;(2)若CD=m,求BC的值。