如图,已知抛物线C1:x2+by=b2经过椭圆C2:+=1(a>b>0)的两个焦点.(1)求椭圆C2的离心率;(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.
(本小题共12分)已知抛物线的焦点是F,点P是抛物线上的动点,又有点A(3,2),求最小值,并求此时P点的坐标.
(本小题共12分)如图,△ACD是等边三角形,△ABC是等腰直角 三角形,∠ACB=90°,BD交AC于E,AB=2. (1)求cos∠CBE的值; (2)求AE。
(本小题共12分) 求。
(本小题共14分) 已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成角的余弦值; (Ⅲ)求面与面所成二面角的余弦值.
(本小题共13分)